CDC-25.1 stability is regulated by distinct domains to restrict cell division during embryogenesis in C. elegans.

نویسندگان

  • Michaël Hebeisen
  • Richard Roy
چکیده

Cdc25 phosphatases are key positive cell cycle regulators that coordinate cell divisions with growth and morphogenesis in many organisms. Intriguingly in C. elegans, two cdc-25.1(gf) mutations induce tissue-specific and temporally restricted hyperplasia in the embryonic intestinal lineage, despite stabilization of the mutant CDC-25.1 protein in every blastomere. We investigated the molecular basis underlying the CDC-25.1(gf) stabilization and its associated tissue-specific phenotype. We found that both mutations affect a canonical beta-TrCP phosphodegron motif, while the F-box protein LIN-23, the beta-TrCP orthologue, is required for the timely degradation of CDC-25.1. Accordingly, depletion of lin-23 in wild-type embryos stabilizes CDC-25.1 and triggers intestinal hyperplasia, which is, at least in part, cdc-25.1 dependent. lin-23(RNAi) causes embryonic lethality owing to cell fate transformations that convert blastomeres to an intestinal fate, sensitizing them to increased levels of CDC-25.1. Our characterization of a novel destabilizing cdc-25.1(lf) intragenic suppressor that acts independently of lin-23 indicates that additional cues impinge on different motifs of the CDC-25.1 phosphatase during early embryogenesis to control its stability and turnover, in order to ensure the timely divisions of intestinal cells and coordinate them with the formation of the developing gut.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A mutation of cdc-25.1 causes defects in germ cells but not in somatic tissues in C. elegans.

By screening C. elegans mutants for severe defects in germline proliferation, we isolated a new loss-of-function allele of cdc-25.1, bn115. bn115 and another previously identified loss-of-function allele nr2036 do not exhibit noticeable cell division defects in the somatic tissues but have reduced numbers of germ cells and are sterile, indicating that cdc-25.1 functions predominantly in the ger...

متن کامل

cdc-25.2, a C. elegans ortholog of cdc25, is required to promote oocyte maturation.

Cdc25 is an evolutionarily conserved protein phosphatase that promotes progression through the cell cycle. Some metazoans have multiple isoforms of Cdc25, which have distinct functions and different expression patterns during development. C. elegans has four cdc-25 genes. cdc-25.1 is required for germline mitotic proliferation. To determine if the other members of the cdc-25 family also contrib...

متن کامل

CWN-1 functions with DSH-2 to regulate C. elegans asymmetric neuroblast division in a beta-catenin independent Wnt pathway.

In Caenorhabditis elegans, Wnt signaling regulates many asymmetric cell divisions. During embryogenesis, the C. elegans Dishevelled (Dsh) homolog, DSH-2, regulates asymmetric neuroblast division of the ABpl/rpppa blast cell. Dsh is a key intracellular component of both beta-catenin dependent and beta-catenin independent Wnt pathways. In C. elegans, most of the well-characterized asymmetric cell...

متن کامل

LIN-23, an E3 Ubiquitin Ligase Component, Is Required for the Repression of CDC-25.2 Activity during Intestinal Development in Caenorhabditis elegans

Caenorhabditis elegans (C. elegans) utilizes two different cell-cycle modes, binucleations during the L1 larval stage and endoreduplications at four larval moltings, for its postembryonic intestinal development. Previous genetic studies indicated that CDC-25.2 is specifically required for binucleations at the L1 larval stage and is repressed before endoreduplications. Furthermore, LIN-23, the C...

متن کامل

Control of developmental networks by Rac/Rho small GTPases: How cytoskeletal changes during embryogenesis are orchestrated

Small GTPases in the Rho family act as major nodes with functions beyond cytoskeletal rearrangements shaping the Caenorhabditis elegans embryo during development. These small GTPases are key signal transducers that integrate diverse developmental signals to produce a coordinated response in the cell. In C. elegans, the best studied members of these highly conserved Rho family small GTPases, RHO...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 135 7  شماره 

صفحات  -

تاریخ انتشار 2008